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Abstract

In this paper, we consider optimal design problems that involve shape optimization. The goal is to determine the

shape of a certain structure such that it is either as rigid or as soft as possible. To achieve this goal we combine two new

ideas for an efficient solution of the problem. First, we replace the eigenvalue problem with an approximation by using

inverse iteration. Second, we use a level set method but rather than propagating the front we use constrained opti-

mization methods combined with multilevel continuation techniques. Combining these two ideas we obtain a robust

and rapid method for the solution of the optimal design problem.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction and problem setup

In this paper, we consider optimal design problems that involve shape optimization. The goal is to
determine the shape of a certain structure such that it is either as rigid or as soft as possible. Although a

similar problem was originally posed by Lagrange and later by Rayleigh, only recent numerical treatment

has been given to it [6,14,15,18–21]. In general, the mathematical problem can be represented as finding a

distributed parameter qðxÞ that solves the following constrained optimization problem

min or max k; ð1aÞ
s:t: k is the minimal eigenvalue of Lu ¼ kqðxÞu; ð1bÞ

q 2S; ð1cÞZ
X
qdV ¼ M ; ð1dÞ
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where L is a self adjoint, differential, elliptic operator and S is a space such that q can have values of q1 or

q2 only. If L is the negative Laplacian, then the problem is a model problem for many engineering design

problems [4,6].
In general, the eigenvalues are not continuously differentiable functions with respect to the parameters

we seek and this generates a considerable complication that leads to semi-definite programming techniques

[15]. In this paper, we avoid this complication by assuming that the first eigenvalue is simple, that is, it does

not have a multiplicity of more than one. This is theoretically justified for the model problem we solve here.

All the methods known to us for eigenvalue optimization use the eigenvalue equations themselves to

define gradients of the eigenvalue with respect to the parameter (for a survey see [15,20]). For large scale

problems such approach is computationally expensive as it requires accurate evaluation of eigenvectors.

Indeed, if we consider 3D structures then the discretized constrained optimization problem (1) can be very
large as both q and u can have dimensionality of millions. We, therefore, take a very different approach.

First, we approximate the (smallest) eigenvalue as a finite, fixed point process and replace the eigenvalue

equation with the inverse iteration. We then compute the gradients of this approximation (rather than of

the true eigenvalue). Our approach tightly couples the way we compute the eigenvalue to the way we

calculate its derivative and it is unlike the common approach where the process of obtaining the eigen-

value is divorced from the process of calculating its derivative. The advantage of our approach is that we

are able to easily transform the problem to a constrained optimization problem and use standard tech-

niques for its solution. Even more important, we are able to avoid a very exact eigenvalue computation
early in our iteration and we can generate a natural continuation process to be used for highly nonlinear

problems.

In order to deal with the constraint that q 2 S we use a level set method. In a recent paper, Osher and

Santosa [18] have used a level-set method to solve this problem. Their approach requires the computation

of the generalized eigenvalues problem at each iteration and uses level set technology to track the evolving

interface by solving the Hamilton–Jacobi equations which describe the surface evolution. From an opti-

mization standpoint, their method is equivalent to a steepest descent method and, therefore, converges

slowly. We like the general idea of using level-set to represent the shape but our numerical treatment of the
equations is very different. We avoid the Hamilton–Jacobi equations alltogether and treat the problem as a

numerical optimization problem. We solve the optimization problem using a reduced Hessian Sequential

Quadratic Programming (SQP) method combined with multilevel continuation techniques. This allows us

to quickly solve the optimization problem in few iterations at a fraction of the cost used when the problem

is solved by traditional level set methods. The idea of avoiding the Hamilton–Jacobi equation and to use

modern optimization methods is relatively new for level-set methods. In a recent work, Burger [5] has

suggested a different methodology to obtain similar results in a more general setting. Our method is dif-

ferent and it is based on the work of [13].
We choose to discretize the problem first and only then to optimize so we are able to use the overall

framework and tools of numerical optimization techniques [17]. Care must be taken that at the end of the

process the solution to the discrete problem is actually (an approximation to) the solution of the continuous

problem. This is by no means a trivial thing to verify (see comments below).

To use level set ideas on a grid we set q ¼ vhðmÞ where m is the level set function, v is the usual char-

acteristic function and vh is its smooth approximation. To make this function differentiable we use similar

ideas as in [13] and set

vhðmÞ ¼
1

2
tanhðahmÞ þ 1:5; ð2Þ

where ah depends on the grid size h. The derivative of this function converges to a (scaled) delta function

and approximates the interface. Similarly to [13] our basic assumption is that at the limit (as a!1 and
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Fig. 1. Three possible level-set functions.

520 E. Haber / Journal of Computational Physics 198 (2004) 518–534
h! 0) the solution m converges to the continuous solution of the problem. However, there is no proof for

this assumption and it may well be that the solution to the continuous problem exist only in a different class
of composites [1]. In this case the limit h! 0 does not exist and our method fails. To illustrate this point

consider the three possible level-set functions m1, m2 and m3 plotted in Fig. 1. If ah !1 then

vhðm1Þ ¼ vhðm2Þ ¼ vhðm3Þ. However, for a finite small enough ah, vhðm1Þ 6� vhðm2Þ and the solution repre-

sented by m2 can be thought of as a composite. If we now refine our grid and enlarge our ah we will have

again vhðm1Þ � vhðm2Þ but we could still obtain a solution m3 and again vhðm3Þ 6� vhðm2Þ. One can see that

this sequence is leading to a solution m ¼ 0 in which the limit does not exist. If as the grid refines we obtain

a mixture of materials then the assumption on the convergence of the discrete problem to the continuous

problem is wrong. Working with a multilevel strategy allows as to numerically test this assumption.
We choose ah such that the width of the approximation to the delta function is roughly three pixels. 1

This choice is typical to many discrete delta function approximation and was used in other level-set related

work [8] and it is in the same class of functions suggested in [13].

Discretizing the problem we define the following optimization problem

min � kþ 1

2
ĉkrhmk2; ð3aÞ

s:t: k is the minimal eigenvalue of Lu ¼ kDðmÞu; ð3bÞ
hdeTqðmÞ ¼ M ; ð3cÞ

where L is a finite volume or a finite element discretization of L and DðmÞ is a diagonal mass matrix of the

values of qðmÞ on the grid, rh is the discrete gradient and ĉ is a small regularization parameter. We add this

regularization term because the problem without it is ill-posed, that is, there may be more than one level set
function m which approximately solves the problem because it is clear that for some function class m there

exist m1 and m2 such that vhðm1Þ � vhðm2Þ. If we do not add this term we may observe ill-conditioning of the

Hessian which slows the convergence rate of our method. The regularization term is added in order to

obtain a unique level-set function m; it does not intend to change the level-set of m by much but to rather

generate a unique function m which we are able to interpolate on different grids. To make sure that this
1 We define the width of the function, w, as an interval where
R w=2
�w=2 v0hðxÞdx ¼ 0:66.
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regularization does not change the solution much we set the regularization parameter to be h2 where h is the
grid size. This type of regularization is common in fluid dynamics (see [22]).

Finally, the single integral equality constraint is discretized using the midpoint method, where h is the
grid size and d is the dimension of the problem and e ¼ ½1; . . . ; 1�T. In order to avoid the equality constraint

(3c) directly we use regularization or penalty. We replace the constrained problem (3) with the uncon-

strained optimization problem

min � kþ b
1

2
ckrhmk2

�
� hdeTqðmÞ

�
; ð4aÞ

s:t: k is the minimal eigenvalue of Lu ¼ kDðmÞu; ð4bÞ

where b is a fixed (but unknown) penalty parameter and bc ¼ ĉ. It is easy to show that b corresponds to the

Lagrange multiplier of the constrained problem which is positive for the minimization problem (the ‘‘+’’ k)
and negative for the maximization problem. For the minimization problem, if b is very large, we require to

minimize the total mass and, therefore, we obtain a very small mass, thus q is mainly made of material q1

which is lighter. If, on the other hand, b is very small, the penalty on the total mass is small and this leads to

a large mass thus q is mainly material q2 which is heavier. The total mass in this formulation can be thought

of as a map

M ¼ MðbÞ ¼ hdeTqðmðbÞÞ; ð5Þ

where mðbÞ is obtained by solving the optimization problem (4) for a specific b. The parameter b has to be

tuned such that the constraint is satisfied and we do this using a secant method. From a theoretical point of
view, there is no guarantee that the map MðbÞ is smooth. In some well known cases such a map can have

jumps [10] and this implies that there is no minimizer subject to the constraint. In our numerical experiment

this function was smooth but we do not have a proof that this is the case in general. Our formulation is very

similar to regularization of inverse problems [9] and to trust region methods [7] where an integral constraint

is replaced with a penalty term. In our previous work [2], we have used multilevel continuation techniques

to evaluate the penalty parameter b. In this paper, we use a similar strategy with a few minor modifications.

The rest of this paper is divided as follows. In Section 2, we review the inverse iteration method to

compute the smallest eigenvalue of D�1A and motivate its use. In Section 3, we formulate the discrete
optimization problem and derive the Euler–Lagrange equations to be solved. In Section 4, we discuss the

solution of these equations utilizing constrained optimization techniques and the reduced Hessian SQP

approach. In Section 5, we show how to use a multilevel continuation method to quickly solve the problem.

In Section 6, we use yet another continuation process in the inverse iteration in order to obtain a stable

algorithm. Combining the two continuation processes allows us to quickly converge even for highly

nonlinear problems. Finally in Section 7, we carry out numerical experiments that demonstrate the ad-

vantages of our technique and we summarize the paper in Section 8.
2. The inverse iteration

As explained in the introduction, we would like to avoid the need to accurately compute the eigenvalue

problem Lu ¼ kDðmÞu at each iteration, especially if we consider problems in 3D. We, therefore, refor-

mulate the problem such that only the smallest eigenvalue is obtained in an increasing order of accuracy.

There are a few options for such a process. Maybe the fastest converging one is the Rayleigh

Quotient iteration which converges in a cubic rate. The problem with this process is that it requires to
solve linear systems of the form ðL� kkDÞv ¼ Du which can become very ill-conditioned. We, therefore,

use the inverse iteration technique. This method converges only linearly but it has the three main
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advantages. First, only systems of the form Lv ¼ Du need to be solved. Using the fact that L is a

discretization of an elliptic operator we use multigrid methods [22] to quickly calculate an approximate

solution to these systems with the desired accuracy. Second, it can be shown that the convergence,
although linear, is grid independent [16]. Finally, the approach generates simple expressions which are

easily differentiated. This is an important advantage when we consider a constrained optimization

process where derivatives have to be taken.

The inverse iteration process for the computation of the smallest eigenvalue of a positive definite system

can be summarized as follows:

The inverse iteration

• Choose a vector u0 and an integer n such that ku0k ¼ 1

• For j ¼ 1; . . . ; k

Solve Luj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uTj�1uj�1
q Duj�1:

• Set k � 1ffiffiffiffiffiffiffi
uTk uk
p .

An important issue is the selection of u0, the initial vector. If the vector contains mainly the eigenvector

which corresponds to the smallest eigenvalue of D�1L then we may require a small k to obtain good results.

We return to this point when we discuss the multilevel continuation process.

We reformulate the inverse iteration process as a nonlinear system of equations

Cðm; uÞ ¼ IðuÞAu� BðmÞu� bðmÞ ¼ 0; ð6Þ

where

A ¼ diagðL; L; . . . ; LÞ;
BðmÞ ¼

0

DðmÞ 0

�
DðmÞ 0

0
BB@

1
CCA;
IðuÞ ¼

I ffiffiffiffiffiffiffiffiffi
uT1 u1

p
ffiffiffiffiffiffiffiffiffi
uTk uk

p
0
BB@

1
CCA;
u ¼ ½uT1 ; . . . ; uTk �
T; bðmÞ ¼ ½ðDðmÞu0ÞT; 0; . . . ; 0�T:

We also define the matrix Q as a matrix of zeros and ones such that Qu ¼ uk. Obviously, the matrices A,
B and IðuÞ are never generated in practice and only matrix vector products of the form Lu and Du are

needed but it is easier to analyze our problem and to use numerical optimization techniques when the

system is written in this form.

Using these definitions we replace the original eigenvalue optimization with the maximization or min-

imization of

1

2k2
� 1

2
uTQTQu:
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The advantage of this formulation is that while the original eigenvalue equation has, in general, n
solutions, however, the process we define here has a unique result. Also, by minimizing or maximizing

the inverse of the squared eigenvalue (rather than the eigenvalue itself) we get a simpler expression to be
optimized.
3. The discrete optimization problem

We now return to the discrete optimization problem. As explained in the introduction, we avoid the

eigenvalue problem directly and replace it with the nonlinear system (6). This allows us to use simple

optimization tools. Care must be taken that we are solving the correct optimization problem, i.e., that the
number of iterations in the inverse iteration process is sufficiently large to approximate the eigenvalue of the

system. We return to this point later. For simplicity of notation we write the problem of maximizing

the smallest eigenvalue. The minimization is done by simply changing the sign of the eigenvalue approx-

imation and the level-set term.

The problem we solve is the following constrained optimization problem

min
1

2
uTQTQuþ b

1

2
ckrhmk2

�
� hdeTqðmÞ

�
; ð7aÞ

s:t: Cðm; uÞ ¼ IðuÞAu� BðmÞu� bðmÞ ¼ 0: ð7bÞ

Following our work [3,11,12] we form the Lagrangian

Jðu;m; lÞ ¼ 1

2
uTQTQuþ b

1

2
ckrhmk2

�
� hdeTqðmÞ

�
þ lTðIðuÞAu� BðmÞu� bðmÞÞ; ð8Þ

where l is a vector of Lagrange multipliers.

Differentiating with respect to u, m and l we obtain the following nonlinear system of equations to be

solved

Ju ¼ QTQuþ CT
u l ¼ 0; ð9aÞ
Jm ¼ b crT
hrhm

�
� hdq0ðmÞ

�
þ CT

ml ¼ 0; ð9bÞ
Jl ¼ IðuÞAu� BðmÞu� bðmÞ ¼ 0: ð9cÞ

The matrices Cm and Cu are the differentiation of the constraint Cðm; uÞ with respect to m and u, respec-
tively.

Cu ¼ IðuÞAþ ½IðuÞAufix�u � BðmÞ;
Cm ¼ diag ðq0ðmÞÞðu0Þð Þ; diag ðq0ðmÞÞðu1Þ
� �

; . . . ; diag ðq0ðmÞÞðuk�1Þ
� �� �T

:

It is important to note that the matrix Cu can be thought of a discretization of a differential operator and

the matrix Cm is simply a combination of diagonal positive matrices which implies that it involves only zero

order derivatives. This fact is crucial to the effective solution of the problem. Also, its important to note that

the matrix ½IðuÞAufix�u is a lower block triangular dense matrix but its product with a vector can be cal-

culated in OðnÞ operations by simple rearrangement of the vectors. The matrix Cu is a lower triangular
matrix with the Laplacian on its diagonal and, therefore, it is possible to solve a system of the form Cuv ¼ w
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and CT
u v ¼ w by solving a few Poisson equations which can be done efficiently by using multigrid. Our

multigrid is a standard geometrical multigrid method with bilinear prolongation and restriction. We use

two steps of symmetric Gauss–Seidel as a smoother and combine everything into a W-cycle. The number of
cycles needed to obtain a relative accuracy of 10�8 ranges between 5 and 6.
4. Solving the optimization problem

In order to solve the optimization problem, we use the reduced Hessian Sequential-Quadratic-Pro-

gramming method (SQP) [17], utilizing the properties of the matrices in the Euler–Lagrange equations in

order to solve the resulting linear systems.
We start by approximating the full Hessian of the problem by a Gauss–Newton approximation (see for

details [12])

Cu 0 Cm

QTQ CT
u 0

0 CT
m bR

0
B@

1
CA

su

sl

sm

0
B@

1
CA ¼ �

Jl

Ju

Jm

0
B@

1
CA; ð10Þ

where for the simplicity of notations we note by R the derivative of the term multiplied with b in (8) with

respect to m.
In the reduced Hessian method, we eliminate the unknowns su and sl obtaining an equation for sm alone.

We, therefore, start by eliminating su

su ¼ C�1u Jl � C�1u Cmsm:

To calculate the term C�1u Jl we solve the lower triangular block system Cuv ¼ Jl which is done by solving

k Poisson equations.

After eliminating su we eliminate sl. To do that we substitute the computed su into the Hessian system

sl ¼ C�Tu ðJm � QTQsuÞ:

Note that this requires the solution of the system

CT
u v ¼ w:

This system is an upper triangular block system with LT on its diagonal. We, therefore, use the same

multigrid solver for the solution of this problem as well.

Substituting su and sl into (10) we obtain an equation for sm alone. The equation has the form

ðJTJ þ bRÞsm ¼ CT
mC
�T
u ðJm þ QTQC�1u JlÞ � gr; ð11Þ

where the matrix J is

J ¼ �QC�1u Cm:

The right-hand side of this equation, gr, is referred to as the reduced gradient and the dense matrix on the

left-hand side is referred to as the reduced Hessian. The reduced Hessian is dense and, therefore, we do not
compute it in practice. There are two options to proceed. First, we can solve the reduced Hessian system

(11) using the conjugate gradient (CG) method. At each CG iteration we require to solve systems of the

form Cuv ¼ w and CT
u v ¼ w which can be done using a multigrid method. If the number of CG iterations is

small then such an approach can quickly converge. However, the problem with this approach that it is hard

to obtain a good preconditioner for this system [23].



E. Haber / Journal of Computational Physics 198 (2004) 518–534 525
Another approach is to use a quasi-Newton method in order to approximate the reduced Hessian and

solve instead.

fHrsm ¼ gr;

where fHr is an approximation to the reduced Hessian. In this case no or very simple matrix inversion is

needed and the approximation to the reduced Hessian is obtained through the sequence of reduced

gradients gr. In this work we have chosen to use the L-BFGS method [17]. The advantage of the method

is that the only matrix inversion that is needed for the solution of the approximate reduced Hessian is its
initial guess and, therefore, we can quickly calculate the product of the inverse reduced Hessian times a

vector. In general, the number of steps of this method can be larger compared with the Newton type

approach, however, for this problem, as we demonstrate in our numerical examples, the number of steps

needed was very small. Our implementation of L-BFGS is standard (see [17]). The reduced Hessian is

initiated to

H0 ¼ bðI þ crT
hrhÞ

and we invert it at each iteration by using the same multigrid solver used for the Poisson equation described

above.

In order to globalize the optimization algorithm and to guarantee the convergence to a (local) minimum

we use the l1 merit function with a simple Armijo backtracking line-search (see [17] for details). We have

found that using our continuation strategy (see Sections 5 and 6) this line search was more than sufficient
and never failed. Hence we avoided the more involved and more expensive line search which involves

evaluating reduced gradients in addition to objective functions.
5. Multilevel continuation

In order to speed-up computations, deal with possible high nonlinearities, gain extra accuracy and

evaluate the penalty parameter we have embedded our nonlinear optimization solver within a multilevel
continuation iteration. Multilevel methods are especially effective for this problem due to two main reasons.

• The smallest eigenvalue of an elliptic differential operator corresponds to a smooth eigenvector and,

therefore, can be computed on a coarse grid with (relative) high accuracy.

• The function m is smooth and, therefore, we are able to represent it on a coarse grid.

As we now demonstrate, utilizing these properties we obtain a multilevel iteration that is highly efficient

and reduces the computational time significantly. We base our method on our previous work [2] with some

modifications to deal with the problem at hand. The algorithm is as follows:

Algorithm 1 – Grid continuation
• Initialize the parameter mH and choose a vector u0 ¼ qH as initial guess to the first eigenvector on the

coarse grid.

• While not converged:

1. Use the methods discussed in Section 4 to solve the optimization problem on the current grid.

2. Use a search technique in the penalty parameter to approximately solve the mass constraint (5)

M ¼ MðbÞ.
3. Output: mH , kH , b, k and qH , where qH is the approximation to the first eigenvector, b is the penalty

parameter evaluated on grid H and k is the number of inverse iterations needed to compute the eigen-
value to a prescribed accuracy.

4. Check for convergence.

5. Refine the mH and qH grid to h using bilinear interpolation:
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mh ¼ IhH mH ; qh ¼ IhH qH :

6. Set the initial guess for the eigenvector qh.
7. Set H  h.
In order to check for convergence, we compare the difference between the computed models sm ¼

jjIhHmH � mhjjH1
and the computed eigenvectors su ¼ jjIhHqH � qhjj on fine and coarse grids. We stop the

iteration when maxðsm; suÞ6 s. Typically in our implementation we choose s ¼ 10�3. In other cases, we will

use a prescribed fine grid. In these cases, we stop the process only when we have solved the equations on the

prescribed finest grid and the hope then is that the grid is fine enough that the solution of the discrete

problem is good enough. Even in this case, if we test the difference between the solution on two grids then

we can estimate the error. This technique is by no means it is used in many numerical PDE applications

[22]. Although we have not done so in this paper, our approach allows for a nonuniform refinement.

To evaluate the penalty parameter, we use a simple secant method. This allows us to approximately solve
the equation

hdeTqðmhðbÞÞ ¼ Mh ð12Þ

by only a few evaluations of m for different b�s. Our basic assumption is that MðbÞ is a smooth function. If

this is not the case then b on the coarse grid may not indicate the correct b on the fine grid. In virtually all of

our numerical experiments, we have found this process to be efficient. It is important to note that we should

not try to over-solve Eq. (12). Recall that due to our parametrization, the mass is almost a discrete variable.

We, therefore, solve (12) only approximately and stop when

khdeTqðmhðbÞÞ �Mk6 lhd ;

where l is a small integer (typically 2–4). Thus, we allow some flexibility which is proportional to the mass

of each pixel. We have found in our experiments that we are able to evaluate b accurately on a coarse grid

and avoid expensive fine grid iterations.

There are a few other points in our continuation procedure which are different from standard contin-

uation methods, the major one is that the output of the initial guess qH and setting it as the initial guess for
the next level. As we have discussed in the introduction, the choice of a good initial vector can reduce the

number of fixed point iterations. If the initial vector is close enough to the first eigenvector then one re-

quires a very small number of inverse iterations. We have found that using this strategy, the initial vector on

the finest grid is very good and that we are typically able to reduce the number of inverse iterations on the

finest grid to 2–3.

Furthermore, using this approach we needed very few fine grid iterations (usually less than 5) and thus

the total work on the fine grid was indeed very small.
6. Continuation in the inverse iteration

Although our multilevel iteration is highly efficient we found that for some cases, the solution on the

coarsest level required many iterations and in some cases fails to converge if we set the level set function to a

very bad guess. In order to be able to always converge, even on coarse grids, and to obtain a more robust

algorithm we have used a continuation in the fixed point parameter, that is, we start by doing very few

inverse iterations and increase this number until we converge. The reason that such a method works well is
that it is easy to verify by inspecting the equations that the problem becomes more nonlinear when the

number of inverse iterations increases. Therefore, problems with a small number of inverse iterations tend

to converge faster and give good initial guesses to the next problem with more inverse iterations. We

summarize the algorithm as follows.
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Algorithm 2 – Fixed point continuation

• Initialize the parameter m and choose a vector q as initial guess to the first eigenvector on the coarse grid.

Set the number of fixed point iterations k ¼ 2.
• While not converge:

1. Use the methods discussed in Section 4 to solve the optimization problem.

2. Use a search technique in the penalty parameter to approximately solve the mass constraint.

3. Output: m, k, b and q.
4. Check for convergence.

5. Set k  k þ 1.

Similar to the grid continuation, we successively improve our initial guess and obtain high accuracy in

the computed eigenvectors and eigenvalues.
7. Numerical experiments

In this section, we report on numerical experiments in 2D and 3D. The goal of these experiments is to

demonstrate the effectiveness of the techniques

7.1. Maximizing and minimizing k in 2D

We run our first experiment for the model problem in 2D where L ¼ �r2 with homogeneous Drichlet

boundary conditions, by 652 grid and use the LBFGS(10) method. We require a total mass of 1:154 (which

is equivalent to 650 pixels). To obtain an eigenvalue with at least three digit accuracy we set the number of

fixed point iterations to 7. This number can be estimated by comparing consecutive iterations in the inverse

iteration procedure. We then solve the problem first on the single fine grid without any continuation and

follow the iteration. To solve the problem on a single fine grid, we needed 44 fine grid iterations to reduce

the absolute value of the gradient to 10�6. This number is better than the iteration counts reported in [18] by
a factor of 3–4 but as we see next, we can be much more ambitious then that. Recall that each iteration

requires 14 solutions of the Poisson equation thus even in 2D using multigrid methods, the problem is

computationally expensive.

When we use a multilevel continuation technique we can do much better. First, initializing the first

eigenvector with the coarse grid interpolation, we can reduce the number of inverse iterations to 2 keeping

the same accuracy and reducing nonlinearity. The number of iterations and the total mass on each grid is

summarized in Table 1. Also in this table we repeat the experiment but with different mass constraints of 1:5
and 1:75. As it can be seen from the results, our method is insensitive to the mass.

As we can see, the number of the iterations on the coarsest grid is somewhat large but this iteration is

very cheap. Using the coarse grid solution as an initial guess, the number of finer grid iteration reduces

dramatically. Finally the number of the finest grid iteration is reduced to only 3. Since we solve only 4
Table 1

Iterations per grid for maximizing k

Grid Iterations Final mass

52 29 34 55 1.3601 1.753 1.995

92 14 17 16 1.2592 1.606 1.867

172 16 9 12 1.1584 1.541 1.796

332 4 5 5 1.1538 1.499 1.766

652 3 3 3 1.1539 1.496 1.758
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Poisson equations at each iteration (due to the good initial approximation to the first eigenvector), com-

pared with 14 when we do not use multilevel methods, the cost of each fine grid iteration in the multilevel

setting is roughly 3.5 times less than the iteration on a single grid. Thus the overall saving is more than a
factor of a hundred.

In this case, even though the number of iterations on the coarse grid was large, the line search did not fail

and we did not need to use the continuation in the inverse iteration. However, when starting from different

starting models we have used this continuation on the coarse grid if the line search fails.

The final results of the density on each grid in these experiments are plotted in Fig. 2. The level-set

function is plotted in Fig. 3. Finally, we plot the convergence curve of this process in Fig. 4. We can see that

using the multilevel process, the initial iteration on the finest grid had roughly a gradient norm of 10�5.

We repeat the experiment but this time we minimize k by changing the sign in Eqs. (4). The results in this
case are recorded in Table 2. We see that we keep the overall efficiency and that our formulation is in-

sensitive to this change.

As stated in the first section, our grid continuation strategy can work only if the mass constraint is a

continuous function of the penalty parameter b. In Fig. 5 we plot the mass as a function of b for the 652

grid. It is clear that the mass is a smooth function with respect to b over this domain. We note that if this is
Fig. 2. Evolution of the density when using the multilevel approach.



Fig. 3. The final level set function on the finest grid.
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Fig. 4. Convergence curve for the multilevel iteration.
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not the case then also other algorithms (that work with the constraint directly) are prone to trouble because

this implies that the Lagrange multiplier is not continuous with respect to the constraint.

7.2. Maximizing k on a complicated domain

In the next experiment we demonstrate the ability of the level-set to change topology as well as our

algorithm to work on a nontrivial domain. We solve the problem on a square domain with two holes with a



Table 2

Iterations per grid for minimizing k

Grid Iterations Final mass

52 47 38 55 1.4601 1.706 1.998

92 26 19 16 1.211 1.613 1.889

172 15 12 12 1.1590 1.591 1.789

332 7 6 5 1.1544 1.530 1.766

652 5 4 3 1.1542 1.513 1.752

0.005 0.01 0.015 0.02 0.025 0.03
1

1.1

1.2

1.3

1.4

1.5

1.6

β

M
as

s

Fig. 5. The mass as a function of b.
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butterfly shape. Drichlet boundary conditions are imposed inside and outside. In this case we do not use a

multilevel scheme as we are interested in following the changes in the density through the iteration.

We set the grid to 65� 65 and the total mass to 1.33 and trace the iteration. The stopping criteria is set to

when the absolute value of the gradient is smaller than 10�6. We start our iteration with a connected shape.

We see that the shape quickly splits into two separate shapes that ‘‘travel’’ to the right place.

In this case, there is no analytic solution to compare our results with. However, starting from different

starting models yields identical results. The results are plotted in Fig. 6.

7.3. Maximizing k in 3D

As a third experiment we solve the same problem in 3D on a simple domain. The finest grid is set to 653

thus the size of the matrix is 2746252. We set the total mass in this case to 1.11. Evaluating eigenvalues and

eigenvectors for this problem is a computationally demanding task. Here we did not use the single grid
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Fig. 6. Density distributions with the iteration.
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option but rather used our multilevel algorithm alone. The results of this experiment are summarized in
Table 3.

We see again that our method is highly effective and allows us to work with large scale problems.

7.4. High contrast problems and topology changes

In order to further challenge our algorithm we experiment with two new conditions. First, we change the

density contrast from 2 to 1000 that is we set q2 ¼ 1000 rather than q2 ¼ 2 while we keep q1 ¼ 1. Second we

change the differential operator and use the Laplacian but with mixed boundary conditions. The boundary
conditions are set to Drichlet in the x-direction and to Nuemann on the y-direction. Under these conditions

it is clear from physical considerations that the solution should have a black–white–black pattern, that is,

light-heavy-light pattern.
Table 3

Iterations per grid for maximizing k in 3D

Grid Iterations Final mass

53 52 1.261

93 13 1.132

173 9 1.116

333 5 1.110

653 2 1.112
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If we start with only one black region then a topology change must take place. We now show that our

method is effective for such a case.

The starting model for this experiment is plotted in Fig. 7. The mass constraint is set to 1.383� 104 which
implies that 75% of the image should be white. We try to solve the problem first on the 652 grid. After 50

expensive iterations we observe that although the model attempts to generate the topology change, it does

not manage to do so. We, therefore, stop this experiment at this stage.

We now return to our multilevel approach. Rather than trying to solve the problem on the fine grid, we

try to perform the topology change on the coarse grid first. We start with a 172 grid. On this grid we needed

163 iterations to obtain the solution with the different topology. Some of the iterations are plotted in Fig. 7.

We now interpolate our solution to the finer grid and start our iteration from there. The solution on the

332 grid is obtained in 3 iterations and the solution on the 652 grid is obtained in 2 more iterations.
This experiment demonstrates that a topology change implies a bad initial guess which may require

many unfruitful iterations. Using a multilevel strategy to obtain the correct topology can, therefore, reduce

the number of iterations dramatically.

With the same setting, we now change the mass constraint such that the heavier mass populates 90%,

80%, 70%,. . .,10% and 0% of the total area. For each of these experiments, we record b and the number of

fine grid iterations which where needed to obtain the solution. The results are summarized in Table 4. The
Fig. 7. Density change as a function of iteration on the coarse grid.



Table 4

Iterations per percent of the heavier material

Mass Iterations b

90% 3 3.1

80% 3 4.8

70% 3 9.2

60% 3 12.1

50% 4 18.2

40% 4 19.6

30% 4 19.9

20% 5 20.2

10% 5 20.4

0% 4 20.5
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results demonstrate our ability to deal with high contrast materials as well as with different mass con-

straints.
8. Summary and discussion

In this paper, we have used multilevel methods combined with level-sets to solve an eigenvalue opti-

mization problem. It is important to note that in this case as well as many other cases of optimal design and

inverse problems, we do not care about the surface evolution. This is very different from the case of front

propagation where tracking the front is important. Furthermore, evaluating the speed of propagation for
the interface is computationally intensive as it involves computing the solution to an eigenvalue problem.

Thus the bottleneck of this computation is the solution of the forward problem. Using fast marching

schemes and other front propagation techniques to solve such problems is very inefficient. Instead, one can

use standard numerical optimization techniques combined with multilevel methods to obtain solutions in

only a fraction of the cost that is needed for following the front.

The second technique we have demonstrated in this paper is the use of the inverse iteration process for

eigenvalue optimization. As we stated in the introduction, using this approach, we can compute the ei-

genpair with increasing accuracy, avoiding the need to compute a very exact and time consuming eigenpair
for gradient computation. Our work here involved only the first eigenvalue but we intend to expand our

work to the case of minimizing the gap between eigenvalues as well as other eigenvalue problems.
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